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S7-AMFS-1. Let X be a time series of the inflation rates from November 2002 to 
December 2011.  
(a) Let Y be the first lag of X. What does Y stand for in real terms? 
(b) Let Z be the second lag of X. What does Z stand for in real terms? 
(c) Let L be the lag operator. Represent Y in terms of L and X. 
(d) Represent Z in terms of L and X.  
(e) Represent the first difference of series X in terms of X and Y.  
(f)  Represent the first difference of series X in terms of L and X. 
(g) Represent the second difference of series X in terms of X, Y, and Z. 
(h)  Represent the second difference of series X in terms of L and X. 
(Venter, p. 3) 
 
Solution S7-AMFS-1. 
(a) Y is the time series of inflation rates from October 2002 to November 2011.  
(b) Z is the time series of inflation rates from September 2002 to October 2011. 
(c) Y = LX. 
(d) Z = L2X.  
(e) First difference is X-Y.  
(f) First difference is X-LX = (1-L)X.  
(g) Second difference is the first difference of the first difference: (X – Y) – (Y – Z) =  
X + Z – 2Y.  
(h) Second difference is (1-L)2X.  
 
S7-AMFS-2. 
(a) The first autocorrelation of a time series X is a correlation with what?  
(b) The second autocorrelation of a time series X is a correlation with what? 
(c) What is the implication for a shock if most autocorrelations in the time series are 
zero?  
(d) What is the implication for a shock if autocorrelations for many lags in the time series 
are high? (Venter, p. 3) 
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Solution S7-AMFS-2. 
(a) First autocorrelation is between X and LX.  
(b) Second autocorrelation is between X and L2X.  
(c) If most autocorrelations are zero, the effect of a shock quickly goes away. This is 
because the next event does not depend so much on the previous events.  
(d) If many autocorrelations are high, then the effect of the shock can persist for a long 
time.  
 
S7-AMFS-3. Give the formula for the AR(1) time-series model (first-order 
autoregressive process). Define the variables used. (Venter, p. 3) 
 
Solution S7-AMFS-3. 
AR(1) formula: ri+1 = a + bri + sεi+1.  
εi+1 is the standard normal variate.  
a, b, and s are parameters.  
r0 is the starting value in the series; ri is the (i+1)st value.  
 
S7-AMFS-4. In the AR(1) formula, what is the role of the parameter b? What happens as 
b approaches 1, and what happens as b approaches 0? (Venter, p. 3) 
 
Solution S7-AMFS-4. The parameter b indicates the magnitude of the autocorrelation. 
The kth autocorrelation is bk. As b approaches 1, the autocorrelation between ri and ri+1 
increases and persists longer. As b approaches 0, the autocorrelation decreases and 
quickly disappears.  
 
S7-AMFS-5. The following questions pertain to the AR(1) time-series model.  
(a) What is the expected value of rt for some value of t? 
(b) What is the limit of the expected value of rt as t increases without bound?  
(c) What is the variance of rt? 
(d) What is the limit of the variance of rt as t increases without bound? 
(Venter, p. 3) 
 
Solution S7-AMFS-5. 
(a) E(rt) = r0bt + a(1-bt)/(1-b). 
(b) Since │b│ < 1, as t → ∞, bt → 0. Thus, limt → ∞E(rt) = a/(1-b).  
(c) Var(rt) = s2(1-b2t+1)/(1-b2). 
(d) limt → ∞Var(rt) = s2/(1-b2). 
 
S7-AMFS-6. Explain how the simple random walk model is a special case of the AR(1) 
model, and give the formula to show it. (Venter, p. 4) 
 
Solution S7-AMFS-6. 
The simple random walk model is the AR(1) model with a = 0 and b = 1: 
ri+1 = ri + sεi+1. 
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S7-AMFS-7. 
(a) Give the formula for the kth autocorrelation in a simple random walk model for a time 
series with t observations.  
(b) Using a simple random walk model for a time series with 90 observations, find  
(i) the second autocorrelation, (ii) the 36th autocorrelation, and (iii) the 78th 
autocorrelation.  
(c) Fill in the blank: In practice, it is difficult to distinguish a simple random walk from 
_____. 
(Venter, p. 4) 
 
Solution S7-AMFS-7. 
(a) The kth autocorrelation in a simple random walk model for a time series with t 
observations is (1 – k/t)1/2.  
(b) (i) Second autocorrelation: (1 – 2/90)1/2 = 0.988826469.  
(ii) 36th autocorrelation: (1 – 36/90)1/2 = 0.7745966692. 
(iii) 78th autocorrelation: (1 – 78/90)1/2 = 0.3651483717.  
(c) In practice, it is difficult to distinguish a simple random walk from an AR(1) process 
with a high value of b (close to 1).  
 
S7-AMFS-8. Venter, on page 4, describes a form of persistent autocorrelation that is 
more difficult to model. What is it?  
 
Solution S7-AMFS-8. The autocorrelation may be significantly less than 1 at lag 1 (e.g., 
the autocorrelation may be closer to ½), but subsequent autocorrelations decline very 
slowly.  
 
S7-AMFS-9. Give the binomial expansion formula for the dth difference of a time-series 
lag: (1-L)d. (Venter, p. 5).  
 
Solution S7-AMFS-9. We use the following combination notation:  
C(a, b) = a!/(b!*(a-b)!).  
(1-L)d = k=0

∞∑[C(d, k)*(-L)k] = 1 – dL + d(d-1)L2/2! - d(d-1)(d-2)L3/3! + …. 
 
S7-AMFS-10. Take the AR(1) formula (ri+1 = a + bri + sεi+1) and transform it to represent 
a mean-reverting process, where m is the long-term mean a/(1-b), and c = 1-b. (Venter, p. 
5)  
 
Solution S7-AMFS-10.  
Since m = a/(1-b) and c = 1 – b, it follows that m = a/c, and a = mc. Also, b = 1-c.  
ri+1 = a + bri + sεi+1 → 
ri+1 = mc + (1-c)ri + sεi+1 →  
ri+1 = ri + c(m - ri) + sεi+1. 
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S7-AMFS-11.  
(a) Let m be an AR(1) process such that mi+1 = mi + h(μ - mi) + σηi+1, and let r be a 
double mean-reverting process that incorporates m. What is the formula for process r?  
(b) Describe this process in qualitative terms.   
(c) How else can a double mean-reverting process be described in terms of AR(1) 
processes? (Venter, pp. 5-6) 
 
Solution S7-AMFS-11. 
(a) ri+1 = ri + c(mi - ri) + sεi+1. 
(b) In this process, r reverts toward the temporary mean m, and m reverts toward its long-
term mean μ. 
(c) A double mean-reverting process can be described as the sum of two AR(1) processes, 
one of which has a mean of zero.  
 
S7-AMFS-12. Fill in the blanks (Venter, p. 6): 
(a) Brownian motion is a _____ version of the random walk. 
(b) In Brownian motion, the change from time q to time q+t is ____ distributed with 
mean _____ and variance ________. For standard Brownian motion, the parameter ____ 
is equal to 1.   
 
Solution S7-AMFS-12.  
(a) Brownian motion is a continuous version of the random walk. 
(b) In Brownian motion, the change from time q to time q+t is normally distributed with 
mean 0 and variance st2. For standard Brownian motion, the parameter s is equal to 1.   
 
S7-AMFS-12. 
(a) Give the formula for Brownian motion that incorporates a deterministic time trend.  
(b) Give the formula for Brownian motion that incorporates a mean-reverting 
deterministic time trend. 
(c) Give the formula for geometric Brownian motion. (Venter, p. 6) 
 
Solution S7-AMFS-12. (a) drt = a*dt + s*dWt. The deterministic component is a*dt. 
(b) drt = a*(m-rt)*dt + s*dWt. The mean is m.  
(c) d[ln(rt)] = drt/rt = s*dWt. 
  
S7-AMFS-13. 
(a) Fill in the blanks: In a compound Poisson process, the number of events in time t is 
Poisson-distributed in ___, and each event size is a(n) _________ draw from a single 
distribution.  
(b) Give the formula for a compound Poisson process if N(μ) denotes the number of 
events with Poisson mean μ and Xk is the kth jump size. (Venter, p. 6) 
 
Solution S7-AMFS-13. 
(a) In a compound Poisson process, the number of events in time t is Poisson-distributed 
in λt, and each event size is an independent draw from a single distribution.  
(b) drt = d[i=0

N(λt)∑(Xi)].  
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S7-AMFS-14. Describe a common way of simulating Brownian motion and compound 
Poisson processes in order to more realistically represent the instantaneous change dt. 
(Venter, p. 6) 
 
Solution S7-AMFS-14. Instead of having an instantaneous change, short time periods 
(such as single days) are used in place of dt. For instance, if there are 252 trading days in 
a year, then t = 1/252 represents one trading day, and the variance is calculated as st2 = 
s/2522. 
 
S7-AMFS-15. What are the two most common short-rate models for modeling Treasury 
interest rates? Give the name and the formula for each model. (Venter, p. 7) 
 
Solution S7-AMFS-15. The two most common short-rate models for modeling Treasury 
interest rates are as follows: 
1. Vasicek model: drt = (b-art)*dt + s*dWt. 
2. Cox-Ingersoll-Ross (CIR) model: drt = (b-art)*dt + s*rt

1/2*dWt. 
 
S7-AMFS-16. Identify three advantages and one disadvantage of the Cox-Ingersoll-Ross 
(CIR) model, as discussed by Venter on p. 7.  
 
Solution S7-AMFS-16. 
Advantages 
1. The CIR model corresponds to empirical observations that higher interest rates are 
associated with higher volatility.  
2. The CIR model produces more realistic heavier-tailed distributions of rates. 
3. The CIR model makes it impossible to produce negative interest rates, since the 
random term is zero when the short rate is zero.  
Disadvantage 
The CIR model requires simulating on short intervals and complicates the estimation of 
parameters, since the distribution for a short interval is approximately normal, but this is 
not the case for a longer interval.  
 
S7-AMFS-17. What is the assumption of the theory of arbitrage-free yield curves 
regarding the price of a bond? (Venter, p. 7) 
 
Solution S7-AMFS-17. The price of a bond is assumed to be the expected present value 
of the bond payments, discounted back along all possible paths of the short rate, from 
now to the time of maturity.  
 
S7-AMFS-18. If the market price of risk is λ, what term could be added to the Vasicek 
and CIR models to get the risk-neutral short-rate process? (Venter, p. 8)  
 
Solution S7-AMFS-18. The term to be added is λ*s*rt*dt. 
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S7-AMFS-19.  
(a) Let P(t, T) be the price of a bond at time t and maturity time of T. Let  
R(t, T) be the continuously compounded interest rate for this bond at time t. Suppose that 
the payment that occurs at T has magnitude 1. Give the mathematical relationship 
between 1 and  P(t, T) and R(t, T). 
(b) Now, instead of R(t, T), suppose that you have an annually compounded rate Y(t, T). 
Give the mathematical relationship between 1 and  P(t, T) and Y(t, T). 
 
Solution S7-AMFS-19. 
(a) 1 = P(t, T)*exp[R(t, T)*(T-t)]. 
(b) 1 = P(t, T)*[1 + Y(t,T)]T-t. 
 
S7-AMFS-20.  
(a) According to Venter (p. 9), what is the drawback of closed-form yield-curve 
formulas? How does this drawback adversely affect risk management? 
(b) What is a possible way to remedy this problem? 
 
Solution S7-AMFS-20.  
(a) The drawback of closed-form yield-curve formulas is that the market price of risk and 
the short rate are the only variables that determine the entire yield curve, and this limits 
the kinds of shapes that can occur. For risk management, this is a problem, because some 
yield curves are overrepresented in the model while others are omitted – which means 
that all of the possible scenarios are not available, and a distorted picture of risk may 
emerge.  
(b) A possible way to remedy this problem is to use multifactor Vasicek and CIR models 
– either by creating double-mean-reverting processes or expressing the interest rate as a 
sum of two partial interest rates.  
 
S7-AMFS-21. Fill in the blanks (Venter, p. 9): 
(a) The interest rates generated from the Vasicek model follow a ________ distribution. 
(b) The interest rates generated from the CIR model are distributed as a sum of a series of 
_______ distributions.  
(c) The two-factor CIR model requires _____________ in order to have closed-form 
yield curves. 
 
Solution S7-AMFS-21. 
(a) The interest rates generated from the Vasicek model follow a normal distribution. 
(b) The interest rates generated from the CIR model are distributed as a sum of a series of 
gamma distributions.  
(c) The two-factor CIR model requires independent factors (i.e., uncorrelated factors) 
in order to have closed-form yield curves. 
 
S7-AMFS-22. Give the formulas for the Andersen and Lund model, generalizing the CIR 
model to fit US Treasury rates. Briefly explain the model in conceptual terms. (Venter, p. 
10) 
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Solution S7-AMFS-22. 
The Andersen and Lund model has three formulas: 
(i) drt = (bt – a*rt)dt + st*rt

p*dWr_t.  
(ii) dbt = (m – c*bt)dt + h*bt

1/2*dWb_t.  
(iii) d[ln(st

2)] = u*(v – (1/2)ln(st
2))*dt + w*dWs_t. 

 
Formulas (i) and (ii) represent a double-mean-reverting process. (Note how rt is defined 
in terms of bt.) Formula (iii) represents stochastic volatility.  
 
S7-AMFS-23. Give the formulas for the Balduzzi model. Briefly explain the model in 
conceptual terms. (Venter, pp. 10-11) 
 
Solution S7-AMFS-23. 
The Balduzzi model has four formulas: 
(i) drt = (bt – a*rt)dt + st

1/2*dWr_t.  
(ii) dbt = (m – c*bt)dt + h*dWb_t.  
(iii) dst = u*(v – st)dt + w*st

1/2*dWs_t. 
(iv) d[Wr_tWs_t] = ρ*dt.  
 
Formulas (i) and (ii) represent a double-mean-reverting Vasicek process. Formula (iii) 
represents stochastic volatility, which follows a square-root process. Formula (iv) 
correlates stochastic volatility with the interest rate.  
 
S7-AMFS-24. Fill in the blanks (Venter, p. 15): Any short-rate models can be made to fit 
exactly to the initial term structure by making the b parameters _______ chosen to 
______.  
 
Solution S7-AMFS-24. Any short-rate models can be made to fit exactly to the initial 
term structure by making the b parameters deterministic time-dependent functions 
chosen to make the fit exact.  
 
S7-AMFS-25.  
(a) Given that P(t, T) is the price at time t of a bond that matures at time T, give the 
formula for the forward rate f(t, T) in terms of P(t, T).  
(b) Define P(t, T) in terms of f. 
(Venter, p. 15) 
 
Solution S7-AMFS-25.  
(a) f(t, T) = -∂[ln(P(t,T))]/∂T. 
(b) P(t, T) = exp(-t

T∫f(t, s)*ds)).  
 
S7-AMFS-26. Fill in the blank: The forward rate is a representation of all the ________. 
(Venter, p. 15) 
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Solution S7-AMFS-26. The forward rate is a representation of all the possible risk-
neutral interest rates being discounted over at time T.  
 
S7-AMFS-27. You are given the extended formula for the Vasicek model, adjusted for 
the market price of risk: drt = (b(t) – k*rt)*dt + s*dWt, give expressions for the following: 
(a) b(t) in terms of f(0, t) and the variables in the formula above.  
(b) B(t, T), if the bond price is P(t, T) = A(t, T)/exp[B(t, T)*rt].  
(c) A(t, T), if the bond price is P(t, T) = A(t, T)/exp[B(t, T)*rt]. 
(Venter, pp. 15-16) 
 
Solution S7-AMFS-27. 
(a) b(t) = ∂[f(0, t)]/∂[dt] + k*f(0, t) + s2*(1-e-2kt)/(2k).  
(b) B(t, T) = (1-ek(t-T))/k. 
(c) A(t, T) = [P(0, T)/P(0, t)]*exp[B(t,T)*f(0,t) – s2*(1-e-2kt)*B(t,T)2/(4k)] 
 
S7-AMFS-28. Fill in the blank: If the yield curve can match the current curve exactly 
then the ________ and the _________ would be calibrated to ______. (Venter, p. 16) 
 
Solution S7-AMFS-28. If the yield curve can match the current curve exactly then the 
market prices of risk and the partial interest rates would be calibrated to option 
prices. 
 
S7-AMFS-29. 
(a) What way of improving the fit of multifactor short-rate models have Dai and 
Singleton proposed?  
(b) Fill in the blanks: Dai and Singleton found a general framework where the yield curve 
can be calculated in closed form once _________ (what is done?). This is called a(n) 
________. (Venter, p. 16) 
(c) What does the Dai and Singleton approach allow for with regard to factors in the CIR 
model? 
(d) Which model have Dai and Singleton found to be the best-fitting to empirical data, 
and why?  
 
Solution S7-AMFS-29. 
(a) Dai and Singleton proposed to add terms for interaction and correlations among the 
factors. 
(b) Dai and Singleton found a general framework where the yield curve can be calculated 
in closed form once two ordinary differential equations are solved numerically. This 
is called an almost-closed-form solution. 
(c) The Dai and Singleton approach allows for positive correlation among the CIR 
factors to be included. 
(d) Dai and Singleton found the Balduzzi model to be the best-fitting, because it allows 
for both positive and negative correlations among the factors, which is more realistic.  
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S7-AMFS-30. 
(a) What tradeoff does Venter (p. 16) mention with regard to the basic interest-rate 
models with closed-form solutions? 
(b) What issue does Venter (p. 16) state is often ignored with regard to the market price 
of risk? 
 
Solution S7-AMFS-30. 
(a) The tradeoff is between the model being analytically tractable and being able to 
handle stochastic volatility.  
(b) The issue often ignored is that the market price of risk probably changes with time t. 
The models assume that the market price of risk is constant for every T at time t.  
 
S7-AMFS-31.  
(a) With regard to analyzing US inflation rates, the double-mean-reverting AR(1) process 
fits relatively well for the period from 1983 onward. However, Venter (p. 19) states that 
this is probably not sufficient for risk-management purposes. Explain why it is not. 
(b) Which process has been shown to fit the inflation data for 1947-2009 relatively well? 
(Venter, p. 17) 
 
Solution S7-AMFS-31. 
(a) The 1983-onward model would not suffice for risk-management purposes, because 
inflation rates were lower during that period than they had been previously. A model that 
relies solely on information from this period might understate the magnitudes of future 
inflation rates.    
(b) A model consisting of three independent AR(1) processes for partial inflation rates 
has been able to model the 1947-2009 data relatively well.  
 
S7-AMFS-32. According to Venter (p. 20), where is the association between interest 
rates and inflation particularly clear, and how might it be quantified? 
 
Solution S7-AMFS-32. The association between interest rates and inflation is 
particularly clear in  the tails: both inflation and interest rates tend to be very high and 
very low at the same time. A way to quantify this is through the tail association functions 
for the left and right tails: L(z) = Pr(FX(X) < z │ FY(Y) < z) and  
R(z) = Pr(FX(X) > z │ FY(Y) > z).  
 
S7-AMFS-33.  
(a) According to Venter (p. 25), what is the “starting point” for modeling equity prices? 
(b) What is the corresponding formula for the process for S, the price of a stock?  
(c) What problem with this process has been empirically demonstrated? (Venter, p. 25) 
 
Solution S7-AMFS-33. 
(a) The “starting point” is geometric Brownian motion.  
(b) The corresponding formula is d[S(t)]/S(t) = μ*dt + σ*d(Z(t)).  
(c) The problem is one of insufficiently heavy tails, particularly for downward price 
movements.  
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S7-AMFS-34.  
(a) Give the formula for the double-exponential jump process (DEJD), the process for S 
which incorporates the modeling of large upward and downward jumps via Poisson 
processes, given that v and w are the Poisson parameters for the downward and upward 
jumps, respectively.  
(b) Give the corresponding distributions for the downward jump size (F(x)) and the 
upward jump size (F(y)).  
(c) List two reasons for the popularity of the DEJD model. 
(d) What is a reasonable starting assumption regarding the association between equity 
prices and interest rates/inflation?  
(Venter, pp. 25-27) 
 
Solution S7-AMFS-34. 
(a) DEJD formula: d[S(t)]/S(t) = μ*dt + σ*d[Z(t)] + d(i=0

N(vt)∑(Xi-1) + i=0
N(wt)∑(Yi-1)). 

(b) F(x) = xα for 0 < x < 1. F(t) = 1 – y-β for y > 1.  
(c) (i) The DEJD model has high goodness of fit, and (ii) many option prices have been 
worked out for it.  
(d) A reasonable starting assumption is that equity prices are independent of interest 
rates and inflation. Historically, the correlation coefficients differ considerably (in both 
magnitude and direction) depending on what timeframe is examined.  
 
S7-AMFS-35.  
(a) Give four reasons why currency exchange rates are difficult to model and have little 
predictive power.  
(b) Given these difficulties, which models are most often proposed for currency exchange 
rates? (Venter, pp. 27-28) 
 
Solution S7-AMFS-35. 
(a) 1. Currency exchange rates are highly volatile, and the random element is likely to 
predominate in any model.  
2. Currency exchange rates have complex correlation patterns. 
3. Currency exchange rates have persistent autocorrelations. 
4. For various currencies, exchange rates correlate strongly in the tails.   
(b) Random-walk models or continuous driftless Brownian motion are most often 
proposed for currency exchange rates.  
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S7-AMFS-36.  
(a) What does the theory of uncovered interest parity hold? Have empirical studies 
supported or rejected the theory?  
(b) How does covered interest parity differ from uncovered interest parity? 
 
Solution S7-AMFS-36. 
(a) The theory of uncovered interest parity holds that the difference in interest rates in 
two countries’ economies should be the deterministic trend in the exchange-rate process. 
This implies that a deposit made in either currency would have the same expected return 
in each currency. Empirical studies have consistently rejected this theory.  
(b) Covered interest parity incorporates holding a position in forward rates 
 
S7-AMFS-37. What sorts of risks are present in the “risky bonds” that Venter discusses 
on pp. 29-30? What are said “risky bonds”?  
 
Solution S7-AMFS-37. The “risky bonds” in question are corporate and municipal 
bonds. They involve risks pertaining to default, liquidity, and taxation.  
 
S7-AMFS-38. Among the following, which are the most complex to model and why, 
according to Venter (p. 31)? (i) Equities, (ii) Bonds, (iii) Inflation, (iv) Foreign exchange 
rates.  
 
Solution S7-AMFS-38. (ii) Bonds are the most complex to model, because of 
interactions among various bonds and the difficulty of keeping a closed-form yield curve 
while maintaining a reasonable model.  
 
 


